ApTutorGroup.com

Chapter 16: More integral calculus

Example 16.1

Verify that $y(x)=C e^{x^{4}}$ is a solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{3} y
$$

Example 16.2

Verify that $y(x)=-\frac{1}{2 x^{4}+3}$ is a solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x^{3} y^{2}
$$

Example 16.3

Find a solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x+2}, \quad x \neq-2
$$

ApTutorGroup.com

Example 16.4

Find the general solution of the differential equation $y^{\prime}-9 x^{2} y^{2}=5 y^{2}$

Example 16.5

Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x^{2} y}{1+4 y^{2}}
$$

Example 16.6

Find the general solution of the differential equation

$$
x^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x+1, \quad x>0, \quad y>0
$$

Example 16.7

Solve the initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x+1} ; y(1)=8
$$

ApTutorGroup.com

ApTutorGroup.com

Example 16.8

Solve the initial value problem

$$
\frac{\mathrm{dy}}{\mathrm{~d} t}=\left(e^{y-t}\right) \frac{1+t^{2}}{\cos y} ; y(0)=0
$$

Example 16.9

Solve the differential equation $2 x \mathrm{~d} x+e^{x+y} \cos y \mathrm{~d} y=0$

Example 16.10

Find the general solution of the population growth model

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P
$$

ApTutorGroup.com

Example 16.11

A cold object is placed in warmer medium that is kept at a constant temperature S. The rate of change of the temperature $T(t)$ with respect to time is proportional to the difference between the surrounding medium and the object and hence it satisfies

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=k(S-T) \text { and } T(0)=T_{0}
$$

where $k>0$ and $T_{0}<S$; that is, the initial temperature is less than the temperature of the surrounding medium. Find the solution to the initial value problem.

Example 16.12

The rate of decay of a substance y at any time t is directly proportional to the amount of y and also directly proportional to the amount of another substance x.

The constant of proportionality is $-\frac{1}{2}$ and the value of x at any time
t is given by $x=\frac{4}{(1+t)^{2}}$
(a) Given the initial conditions that $y=10$ when $t=0$, find y as an explicit function of t.
(b) Determine the amount of the substance remaining as t becomes very large.

ApTutorGroup.com

Example 16.13

Find the general solution to the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x y$

Example 16.14

Solve the logistic differential equation $\frac{\mathrm{d} y}{\mathrm{~d} t}=k y\left(1-\frac{y}{L}\right)$

Example 16.15

An official wildlife commission releases 20 deer into a protected forest.
After 10 years, the deer population is 208 . The commission believes that the environment cannot support more than 400 deer.
(a) Write a model for the deer population in terms of the number of years, t.
(b) Use the model to estimate the deer population after 10 years.
(c) Discuss the long-term trend of the deer population.

ApTutorGroup.com

Example 16.16

Solve the differential equation $x y y^{\prime}=x^{2}+y^{2}$

Example 16.17

Find the general solution of $\left(x^{2}-y^{2}\right) \mathrm{d} x+x y \mathrm{~d} y=0$

Example 16.18

Find all solutions to

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=x
$$

Example 16.19

Find all solutions to $2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=7 x^{4}$

ApTutorGroup.com

Example 16.20

Find the initial value solution of $y^{\prime}+y \tan x=\cos ^{2} x, y(0)=1$

Example 16.21

Find the solution to:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{2 t}{1+t^{2}} y+\frac{2}{1+t^{2}}, \quad y(0)=0
$$

Example 16.22

Solve the following initial value problem for $x>0$

$$
2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=3 x+1, \quad y(3)=4
$$

Example 16.23

A tank contains 50 litres of a solution composed of 90% water and 10% hydrochloric acid. A second solution containing 50\% water and 50\% hydrochloric acid is being poured into the tank at a rate of 4 litres per minute. At the same time, the tank is being drained at a rate of 5 litres per minute.
(a) How much acid will there be in the tank after t minutes?
(b) How much acid will there be in the tank after 10 minutes?

ApTutorGroup.com

Example 16.24

For the differential equation of $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y$, such that $y(2)=0$, use
Euler's method with a step value of 0.2 to find an approximate value of y when $x=$ 3 , giving your answer to 2 decimal places.

Example 16.25

Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+1}{x y+2}$ and $y=1$ when $x=0$, use Euler's method with
Step size $h=0.25$ to approximate the value of y when $x=1$. Give the approximation to 3 significant figures.

Example 16.26

(a) Show that $\sin \theta \approx \theta$ if θ is close to 0 (θ is in radians).
(b) Use the approximation from (a) to approximate $\sin 2^{\circ}$, and compare your approximation to the result you get from your GDC.

ApTutorGroup.com

Example 16.27

Find the local linear and quadratic approximations of e at $x=0$, and graph e^{x} and the two approximations together.

Example 16.28

Find the Maclaurin polynomials $P_{0}, P_{1}, P_{2}, P_{3}$, and P_{n}, for e^{x} and graph the first four together.

Example 16.29

Find the Maclaurin series for:
(a) $f(x)=\sin x$
(b) $f(x)=\cos x$
(c) $f(x)=e^{x}$

Example 16.30

Given that $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$, find the Maclaurin series for $f(x)=\cos x$

ApTutorGroup.com

Example 16.31

Given that $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, find the Maclaurin series for $f(x)=$ $\sin x$

Example 16.32

Find the Maclaurin series for $f(x)=(1+x)^{k}$, where k is a real number.

Example 16.33

Find the Maclaurin series for $f(x)=\frac{1}{1+x}$

ApTutorGroup.com

Example 16.34
Find the Maclaurin series for $g(x)=\frac{1}{1-x}$

Example 16.35

Find the Maclaurin series for $g(x)=\frac{1}{\sqrt{9-x}}$

Example 16.36

Find the Maclaurin series for $g(x)=\ln (1+x)$

Example 16.37

Find the Maclaurin series for $g(x)=\arctan x$

ApTutorGroup.com

ApTutorGroup.com

Example 16.38

(a) Find the Maclaurin series for $f(x)=e^{x^{2}}$
(b) Hence, find a series for $\int e^{x^{2}} \mathrm{~d} x$
(c) Use the first four terms of the series in (b) to approximate the value of $\int_{0}^{1} e^{x^{2}} \mathrm{~d} x$.

Example 16.39

Find the first three non-zero terms in the Maclaurin series for:
(a) $e^{x^{2}} \sin x$
(b) $\frac{\sin x}{2 e^{x^{2}}}$

Example 16.40

Use the first three terms of an appropriate power series to estimate $\sqrt[5]{33}$

ApTutorGroup.com

Example 16.41

Use the power series method to solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-y=0$

Example 16.42

Use the power series method to solve the differential equation $y^{\prime}-x y=0, y(0)=$ 2

